Analysis of Classification Algorithm on Hypergraph

نویسندگان

  • Linli Zhu
  • Wei Gao
چکیده

Classification learning problem on hypergraph is an extension of multi-label classification problem on normal graph, which divides vertices on hypergraph into several classes. In this paper, we focus on the semi-supervised learning framework, and give theoretic analysis for spectral based hypergraph vertex classification semi-supervised learning algorithm. The generalization bound for such algorithm is determined by using the notations of zero-cut, non-zero-cut and pure component. Furthermore, we derive a generalization performance bound for near-zero-cut partition with optimal parameter .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Algorithm for Imbalance Data Classification Based on Neighborhood Hypergraph

The classification problem for imbalance data is paid more attention to. So far, many significant methods are proposed and applied to many fields. But more efficient methods are needed still. Hypergraph may not be powerful enough to deal with the data in boundary region, although it is an efficient tool to knowledge discovery. In this paper, the neighborhood hypergraph is presented, combining r...

متن کامل

Using Non-Archimedean DEA Models for Classification of DMUs: A New Algorithm

A new algorithm for classification of DMUs to efficient and inefficient units in data envelopment analysis is presented. This algorithm uses the non-Archimedean Charnes-Cooper-Rhodes[1] (CCR) model. Also, it applies an assurance value for the non-Archimedean                          using only simple computations on inputs and outputs of DMUs (see [18]). The convergence and efficiency of the ne...

متن کامل

Visual Analytics of Heterogeneous Data using Hypergraph Learning

For real-world learning tasks (e.g., classification), graph-based models are commonly used to fuse the information distributed in diverse data sources, which can be heterogeneous, redundant, and incomplete. These models represent the relations in different datasets as pairwise links. However, these links cannot deal with high-order relations which connect multiple objects (e.g., in public healt...

متن کامل

Regression-based Hypergraph Learning for Image Clustering and Classification

Inspired by the recently remarkable successes of Sparse Representation (SR), Collaborative Representation (CR) and sparse graph, we present a novel hypergraph model named Regression-based Hypergraph (RH) which utilizes the regression models to construct the high quality hypergraphs. Moreover, we plug RH into two conventional hypergraph learning frameworks, namely hypergraph spectral clustering ...

متن کامل

Vertex-Weighted Hypergraph Learning for Multi-View Object Classification

3D object classification with multi-view representation has become very popular, thanks to the progress on computer techniques and graphic hardware, and attracted much research attention in recent years. Regarding this task, there are mainly two challenging issues, i.e., the complex correlation among multiple views and the possible imbalance data issue. In this work, we propose to employ the hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015